PhD Preliminary	Written	Exam
Spring 2015		

2 Points

Problem 9 (a) A Photovoltaic panel under a given insolation condition operates at its maximum power point with the voltage of 60 V and the current of 20 A. This PV panel supplies power to a 120-V, 60-Hz, residential grid. The PV interface consists of a boost dc-dc converter, followed by a full-bridge, single-phase, dc-ac inverter. Assume all components to be ideal (i.e., zero power loss everywhere for the sake of simplicity). The output of the boost dc-dc converter, operating in a continuous-current-conduction mode at a switching frequency of 250 kHz, is 250 V (dc) across a very large dc-link capacitor such that the ripple in the capacitor voltage can be assumed to be negligible. This capacitor voltage acts as the input to a single-phase, full-bridge, inverter that supplies power to the grid at a unity power factor; assume the ripple in the output current to be negligible. Inverter switches are sine-PWM controlled with the switching frequency of 100 kHz. Assume the inductance on the ac-side of the inverter to be negligible.

Problem 9

Power Electronics

- (i) Draw the circuit diagram of such an interface and label all the components.
- (ii) What is the duty-ratio of the transistor-switch in the boost dc-dc converter?
- (iii) In the single-phase inverter, over one switching time-period, calculate the duty-ratios of all the four transistor-switches when the grid voltage is at its positive peak.
- (iv) What is the peak value of the current into the residential grid?

PhD Preliminary Written Exam	Problem 9	Page 2 of 2
Spring 2015	Power Systems	

2 points

Problem 9 (b) A synchronous machine is connected to an infinite bus as shown in the figure below. The machine has the following parameters: synchronous speed, $\omega_s = 120\pi [rad/s]$, inertia constant, H = 8 [s], machine damping, $D = 0.004 [rad^{-1}s]$, machine terminal voltage, E = 0.9 [pu], mechanical power input, $P_M = 1.0$ [pu], machine terminal impedance, $X_M = 0.2$ [pu], the infinite bus voltage magnitude, $v_{\infty} = 1.0$ [pu], and the line impedance, $X_L = 0.25$ [pu]. Recall that the *swing equations* that govern the evolution of the rotor angle, δ , and frequency, ω , are given by:

$$\frac{d\delta}{dt} = \omega - \omega_{\rm s},$$

$$\frac{2H}{\omega_{\rm s}}\frac{d\omega}{dt} = P_M - P_E - D\left(\omega - \omega_{\rm s}\right),$$
(1)

where P_E is the electrical output power sourced by the generator from terminal 1.

Figure 1: Single line diagram of single machine infinite bus

- (i) Write an expression for the electrical output power, P_E . Your expression should only be a function of E, v_{∞} , δ , X_M , and X_L .
- (ii) Find the equilibrium points for the dynamical system in (1) in the interval $[0, \pi]$.
- (iii) Linearizing the system around the equilibrium point, find the eigenvalues.
- (iv) Which equilibrium point is stable?